Biography
Biography: Rami Hejazi
Abstract
Although more than 100 people have been infected by H5N1 influenza A viruses, human-to-human transmission is rare1. What are the molecular barriers limiting human-to-human transmission? Here we demonstrate an anatomical difference in the distribution in the human airway of the different binding molecules preferred by the avian and human influenza viruses. The respective molecules are sialic acid linked to galactose by an α-2,3 linkage (SAα2,3Gal) and by an α-2,6 linkage (SAα2,6Gal)2. Our findings may provide a rational explanation for why H5N1 viruses at present rarely infect and spread between humans although they can replicate efficiently in the lungs. Avian and human flu viruses seem to target different regions of a patient & apos;s respiratory tract. Highly pathogenic avian influenza A viruses of subtypes H5 and H7 are the causative agents of fowl plague in poultry. Influenza A viruses of subtype H5N1 also caused severe respiratory disease in humans in Hong Kong in 1997 and 2003, including at least seven fatal cases, posing a serious human pandemic threat. Between the end of February and the end of May 2003, a fowl plague outbreak occurred in The Netherlands. A highly pathogenic avian influenza A virus of subtype H7N7, closely related to low pathogenic virus isolates obtained from wild ducks, was isolated from chickens. The same virus was detected subsequently in 86 humans who handled affected poultry and in three of their family members. Of these 89 patients, 78 presented with conjunctivitis, 5 presented with conjunctivitis and influenza-like illness, 2 presented with influenza-like illness, and 4 did not fit the case definitions. Influenza-like illnesses were generally mild, but a fatal case of pneumonia in combination with acute respiratory distress syndrome occurred also. Most virus isolates obtained from humans, including probable secondary cases, had not accumulated significant mutations. However, the virus isolated from the fatal case displayed 14 amino acid substitutions, some of which may be associated with enhanced disease in this case. Because H7N7 viruses have caused disease in mammals, including horses, seals, and humans, on several occasions in the past, they may be unusual in their zoonotic potential and, thus, form a pandemic threat to humans.